organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jens Hartung,^a* Kristina Daniel,^a Ingrid Svoboda^b and Hartmut Fuess^b

^aFachbereich Chemie, Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany, and ^bStrukturforschung, FB11 Material- und Geowissenschaften, Technische Universität Darmstadt, Petersenstrasse 23, D-64287 Darmstadt, Germany

Correspondence e-mail: hartung@chemie.uni-kl.de

Key indicators

Single-crystal X-ray study T = 300 KMean σ (C–C) = 0.004 Å R factor = 0.047 wR factor = 0.145 Data-to-parameter ratio = 13.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

O-Ethyl S-(3-oxoindan-1-yl) dithiocarbonate

The title compound, $C_{12}H_{12}O_2S_2$, is a chiral *O*,*S*-dialkyl dithiocarbonate. The *O*-ethyl substituent and the dithiocarbonate functionality form a plane, which is twisted by 60.7 (2)° from the S-(3-oxoindan-1-yl) group.

Received 14 July 2005 Accepted 26 July 2005 Online 30 July 2005

Comment

Atom C4 of the title compound is a stereogenic center. The racemate was prepared in the course of a study directed toward the development of novel thiazole-2(3H)-thione-derived alkoxyl radical precursors (Hartung, Daniel *et al.*, 2005). Its solid-state geometry was investigated by X-ray diffraction analysis.

The title compound, (I), crystallizes in the monoclinic space group $P2_1/c$ (Z = 4) as a 1:1 mixture of S and R enantiomers. The angle between the 3-oxoindan-1-yl plane [atom C4 deviates by 0.052 (4) Å and C5 by 0.066 (4) Å from the mean plane formed by atoms C6-C12] and the dithiocarbonate group is $62.1 (2)^{\circ}$ [atom O1 deviates by 0.001 (6) Å from the plane formed by atoms C1/S1/S2] (Fig. 1). The C1=S1 distance [1.624 (3) Å] is slightly smaller than mean value of 1.67 (2) Å for the C=S double bond in other O,S-dialkyl dithiocarbonates (Abrahamsson & Innes, 1974; Allen et al., 1987; Duarte *et al.*, 1989). The difference in the S2–C1 [1.716 (3) Å] and S2-C4 [1.808 (3) Å] bond lengths is explained by a change in hybridization from sp^2 at C1 to sp^3 at C4 (Zhang et al., 2003; Hartung, Schmidt et al. 2005). The stereogenic bonds associated with the dithiocarbonate functionality exhibit an Econfiguration for C1-S2 and a Z geometry for C1-O2.

Experimental

A solution of 3-bromo-1-indanone (Minuti *et al.*, 2003) (0.30 g, 3.17 mmol) in acetone (10 ml) was added dropwise (10 min) to a suspension of potassium *O*-ethyl dithiocarbonate (6.0 g, 3.80 mmol) in acetone (20 ml). Stirring was continued for 1 h at 293 K. The solution was subsequently concentrated under reduced pressure to furnish a yellow residue, which was taken up in H₂O and Et₂O. The phases were separated. The aqueous phase was extracted with Et₂O. The combined organic phases were washed with H₂O and dried (MgSO₄). The solvent was removed *in vacuo* to furnish a crude

product, which was purified by chromatography [$R_{\rm F} = 0.80$, SiO₂, petroleum ether/Et₂O (3:1, ν/ν)] to afford 0.63 g (79%) of (I) as a yellow solid. Yellow prism-shaped crystals suitable for X-ray diffraction were obtained by slowly concentrating a saturated solution of (I) in EtOH at 298 K. Analysis calculated for C₁₂H₁₂O₂S₂: C 57.11, H 8.79, S 25.41%; found: C 57.30, H 9.09, S 25.08%. MS (EI, 70 eV): m/z 252 (M^+ , 11), 163 (8), 131 (100), 103 (27). ¹H NMR (CDCl₃, 400 MHz): δ 1.42 (t, 3H, J = 7.2 Hz), 2.86 (dd, 1H, J = 19.6, 3.3 Hz), 3.44 (dd, 1H, J = 19.6 and 7.6 Hz), 4.68 (dq, 2H, J = 3.0 and 7.1 Hz), 5.36 (dd, 1H, J = 3.3, 7.7 Hz), 7.45–7.50 (m, 1H), 7.64–7.68 (m, 2H), 7.79 (m_c , 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.1, 45.9, 46.4, 70.8, 124.2, 127.0, 129.5, 135.7, 137.7, 152.1, 203.3, 213.3.

Crystal data

$C_{12}H_{12}O_2S_2$	$D_x = 1.403 \text{ Mg m}^{-3}$	
$M_r = 252.34$	Mo $K\alpha$ radiation	
Monoclinic, $P2_1/c$	Cell parameters from 703	
a = 11.287 (6) Å	reflections	
b = 11.606 (6) Å	$\theta = 2.9 - 19.1^{\circ}$	
c = 9.864 (6) Å	$\mu = 0.43 \text{ mm}^{-1}$	
$\beta = 112.39 \ (7)^{\circ}$	T = 300 (2) K	
$V = 1194.7 (11) \text{ Å}^3$	Prism, yellow	
Z = 4	$0.78 \times 0.76 \times 0.42 \ \mathrm{mm}$	

6892 measured reflections 2426 independent reflections

 $R_{\rm int} = 0.042$

 $\theta_{\max} = 26.4^{\circ}$ $h = -9 \rightarrow 14$ $k = -14 \rightarrow 14$ $l = -12 \rightarrow 11$

1561 reflections with $I > 2\sigma(I)$

Data collection

Oxford Diffraction Xcalibur
diffractometer with Sapphire
CCD detector
ω scans
Absorption correction: analytical
(CrysAlis RED; Oxford
Diffraction, 2002)
$T_{\rm min} = 0.718, T_{\rm max} = 0.881$

Refinement

Refinement on F^2 Only H-atom coordinates refined $R[F^2 > 2\sigma(F^2)] = 0.047$ $w = 1/[\sigma^2(F_o^2) + (0.0844P)^2]$ $wR(F^2) = 0.145$ where $P = (F_o^2 + 2F_c^2)/3$ S = 1.01 $(\Delta/\sigma)_{max} = 0.010$ 2426 reflections $\Delta \rho_{max} = 0.33$ e Å⁻³182 parameters $\Delta \rho_{min} = -0.29$ e Å⁻³

Table 1

Selected geometric parameters (Å, °).

C1-O1	1.312 (3)	C2-O1	1.455 (3)
C1-S1	1.624 (3)	C4-S2	1.808 (3)
C1-S2	1.716 (3)	C6-O2	1.204 (3)
O1-C1-S1	127.2 (2)	O2-C6-C5	125.4 (2)
O1-C1-S2	114.66 (18)	C7-C6-C5	108.1 (2)
S1-C1-S2	118.13 (16)	C1-O1-C2	118.7 (2)
O2-C6-C7	126.4 (2)	C1-S2-C4	107.27 (12)
C8-C4-C5-C6	-2.2(2)	O1-C1-S2-C4	2.2 (2)
C4-C5-C6-O2	-176.4(2)	S1-C1-S2-C4	-177.74 (14)
S1-C1-O1-C2	1.4 (4)	C8-C4-S2-C1	60.7 (2)
S2-C1-O1-C2	-178.6(2)	C5-C4-S2-C1	-62.1(2)

Figure 1

The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.

All H atoms were located in a difference Fourier map and refined. Their displacement parameters were constrained with $U_{\rm iso}({\rm H})$ values set at $1.2U_{\rm eq}$ of the parent atom.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2002); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2002); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON2002* (Spek, 2003) and *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Deutsche Forschungsgemeinschaft (grant No. Ha1705/5-2 and Graduiertenkolleg 690: Elektronendichte – Theorie und Experiment).

References

- Abrahamsson, S. & Innes, M. (1974). Acta Cryst. B30, 721-725.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Duarte, M., Frampton, H. E., Howard-Lock, H. E., Lock, C. J. L. & Wu, H. (1989). Acta Cryst. C45, 1028–1031.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hartung, J., Daniel, K., Gottwald, T., Gross, A. & Schneiders, N. (2005). In preparation.
- Hartung, J., Schmidt, P., Svoboda, I. & Fuess, H. (2005). Acta Cryst. E61, o1736-o1737.
- Minuti, L., Taticchi, A., Marrocchi, A., Lanari, D., Broggi, A. & Gacs-Baitz, E. (2003). *Tetrahedron Asymmetry*, 14, 481–487.
- Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Versions 1.170.14. Oxford Diffraction, Oxfordshire, England.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Zhang, W., Liu, H.-M., Li, C.-B. & Zhang, W.-Q. (2003). Acta Cryst. E59, o26–o27.